

Regional Transportation Technical Advisory Committee (RTTAC) Transportation Systems Management & Operations (TSM&O) Subcommittee

Meeting Agenda

January 23, 2025 10:00 AM – 12:00 Noon 100 West Cypress Creek Road. 6th Floor, Suite 650, Ft Lauderdale, FL 33309

10:00 AM	I.	Call to Order / Introductions
10:10 AM	II.	 LRTP Updates Miami Dade County TPO Palm Beach TPA Broward MPO
10:45 AM	III.	FDOT District 4 Ramp Metering Alyssa Klein, FDOT District 4
11:30 AM	IV.	Ramp Signals Discussion
11:40 AM	V.	TRB Highlights
11:50 AM	VI.	Upcoming Events:
		Florida Atlantic University Student Leadership Summit ITE Student Chapter January 31-February 1, 2025
		Bike Immersion Ride Miami, FL February 5, 2025
		Safe Streets Summit West Palm Beach, FL February 6-7, 2025
12:00 Noon	VII.	Adjournment

Regional Transportation Technical Advisory Committee (RTTAC) Transportation Systems Management & Operations (TSM&O) Subcommittee

Meeting Agenda

October 24, 2024 10:00 AM – 12:00 Noon 100 West Cypress Creek Road. 6th Floor, Suite 650, Ft Lauderdale, FL 33309

10:00 AM	I.	Call to Order / Introductions
10:10 AM	II.	FDOT D4 TSM&O Master Plan Update Kent Walia, FDOT D4
		Peter Haliburton, CTS
		Dr. Lissy La Paix, CTS
10:40 AM	III.	Transportation Technology Tournament
		Dr. Mohammed Hadi, FIU
		Md Mahmud Hasan Mamun, FIU
11:10 AM	IV.	Hurricane Recover Open Discussion
11:40 AM	V.	Voting:
		☐ TSM&O Subcommittee Schedule 2025
		☐ TSM&O Subcommittee Chair and Vice Chair Election
11:50 AM	VI.	Upcoming Events:
		FDOT Transportation Symposium
		Orlando, FL November 7-8, 2024
		ITE International 2025: Abstracts Due November 2024 Hyatt Regency Orlando, FL August 11-14, 2025
		Bike Immersion Ride (Tentative)
		Miami, FL
		February 5, 2025
		Safe Streets Summit
		West Palm Beach, FL
		February 6-7, 2025
12:00 Noon	VII.	Adjournment

Regional Transportation Technical Advisory Committee (RTTAC) Transportation Systems Management & Operations (TSM&O) Subcommittee

Meeting Minutes

October 24, 2024, 10:00 AM – 12:00 Noon 100 West Cypress Creek Road. 6th Floor, Suite 650, Ft Lauderdale, FL 33309

Meeting attendees:

Hector DiDonato, Miami-Dade TPO Brian Ruscher, Palm Beach TPA Buffy Sanders, Broward MPO Alexandra Lopez, FDOT D4 TSM&O Francisco Morales, FDOT D4 PLEMO Kent Walia, FDOT D4 PLEMO Ana Calleja, FDOT D6 PLEMO Sergio Bravo, FDOT D6 TSM&O Javier Rodriguez, FDOT D6 TSM&O Mohammed Hadi, FIU Md Mahmud Hasan Mamum, FIU Joseph Porges, Palm Tran Girish Kumar, In-House D6 Traffic Ops Peter Haliburton, CTS Lissy La Paix, CTS Catalina Echeverri, Gannett Fleming

Call to Order / Introductions

The meeting was called to order. All meeting attendees introduced themselves and the agencies they represent.

FDOT D4 TSM&O Master Plan Update

Kent Walia from FDOT D4 presented along with Peter Haliburton and Lissy La Paix from CTS the update to the D4 TSM&O Master Plan. The effort started in 2024. The team is setting up the base for congestion and the priorities for the next 5 years. The team is evaluating short, mid, and long term TSM&O strategies. See attachment at the end.

Transportation Technology Tournament (TTT): Digital Twin for Connected Safe and Reliable Travel in an Urban Network in the Presence of Work Zones and Special Events

Dr. Mohammed Hadi and Md Mahmud Hasan Mamum from FIU presented on their entry for the National Operations Center of Excellence (NOCoE) and the U.S. DOT ITS JPO's Professional Capacity Building (PCB) Program. The team traveled to the ITE International conference in Philadelphia to compete with other universities. This competition for students to work directly with public agencies to solve real-world transportation problems utilizing ITS and TSMO solutions. The sponsor for the FIU/FAU team was FDOT D4 TSM&O. See attachment at the end.

Hurricane Recovery Open Discussion

The participating agencies shared lessons learned on operations and emergency management from the 2024 hurricane season in the treasure coast, panhandle, and Tampa Bay area. Local examples include the recovery after hurricane Irma where the signal controller cabinets in City of Key West included raising the cabinet bases.

Voting

TSM&O Subcommittee Chair for the next 2 years will be Hector DiDonato from Miami Dade TPO and Brian Ruscher from Palm Beach TPA to serve as Vice Chair for 2 years.

The voting members also approved the TSM&O Subcommittee Schedule 2025 for last Thursday of January, April, July, and October. Calendar invites will be sent to meet in person at the Broward MPO on the following dates:

- January 23, 2025
- April 24, 2025
- July 24, 2025
- October 23, 2025

Upcoming Events

FDOT Transportation Symposium https://transportationsymposium.fdot.gov/Orlando, FL
November 7-8, 2024

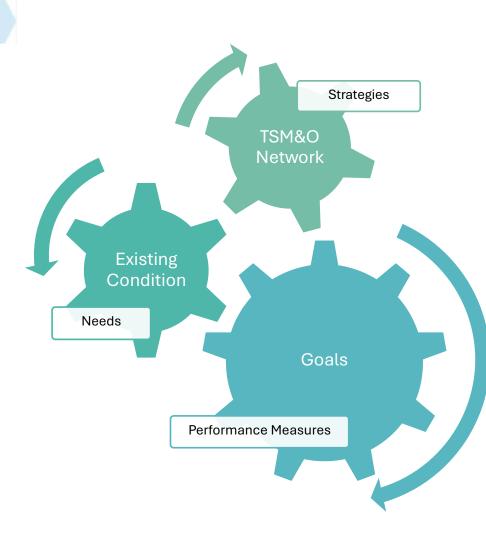
ITE International 2025: Abstracts Due December 3, 2024 Hyatt Regency Orlando, FL August 11-14, 2025

Safe Streets Summit West Palm Beach, FL February 6-7, 2025 https://palmbeachtpa.org/sss2025/

Bike Immersion Ride Miami, FL February 5, 2025

Agenda

- Introduction
- Existing Conditions
- Strategic Network
- Implementation Strategies
- Next Steps



TSM&O strategies are used to <u>manage</u> the transportation system cohesively and improve mobility through integrated and innovative operations and management solutions that <u>maximize existing capacity</u> to <u>eliminate the</u> need to add capacity.

TSM&O Potential Benefits

- Decreased Travel Time and Delay
- Improved Reliability
- Reduction in Crashes
- Lower vehicle operating costs
- Improved collaboration
- Better agency efficiencies
- Lower implementation costs
- Faster implementation timelines

Plan Update - Related Plans and Reports

TSM&O Strategic Plans

- FDOT Central Office TSM&O Strategic Plan 2017
- FDOT District 4 2023 TSM&O Strategic Business Plan 2020

D4 TSM&O Annual Report

- D4 2021 TSM&O Annual Report
- D4 2022 TSM&O Annual Report
- D4 2023 TSM&O Annual Report

Other Districts

- D1 TSM&O Master Plan
- D5 TSM&O Master Plan
- D6 TSM&O Master Plan 2023

Long Range Plans

- Indian River County MPO, 2020
- St. Lucie TPO, 2021
- Martin MPO, 2020
- Treasure Coast Transportation Council (TCTC) 2021
- Palm Beach TPA, 2019
- Broward MPO, 2019
- Southeast Florida Transportation Council (SEFTC)

Outreach and Coordination

Stakeholders

- FDOT Central Office
- Turnpike Enterprise
- SEFTC TSM&O Subcommittee, TCTAC
- MPOs
- · Counties, Cities
- Florida Trucking Association
- Freight Stakeholders
- FAU Freight Mobility Research Institute
- Transit Agencies

Areas Of Coordination

- Goals, outcomes, performance measures
- Network
- New corridors
- Strategies
- Programming and implementation
- · Project Prioritization
- Funding
- Transit strategie

Project Goals & Performance Measure

Safety

Enhance safety for all travelers

- Number of crashes per mile
- Severity of crashes: number of fatalities per mile
- Motorized and Non-motorized crashes
- (Number of) ITS deployment related to: e.g. V2P, Wrong Way Driving Warning

Mobility

Develop tailored mobility of people and goods

- % multimodal trips
- Bicycle/pedestrian integration
- First/last mile
- Truck Services
- Smart multimodal access

Reliability

Improve travel time reliability for motorists, transit users and freight

- V/C ratio, bottlenecks
- Job Accessibility, Dynamic accessibility peak/off peak
- Travel Time Reliability (TTR)

Information

Boost traveler information resources

- ITS Deployment
 - Dynamic Message Signs (DMS):
 - Availability of DMS color messages.
 - DMS link to weather devices (RWIS)
- FL 511: (number of) incidents reported
- Communications with connected vehicles.

Resilience

Ensure TSM&O network resilience

Resilience to roadway events:

- Roadway clearance
- Number of road rangers
- Severe incident response vehicles
- Rapid incident scene clearance

Weather-related resilience:

 Monitor ITS deployment

Technology

Prepare network and system for emerging technologies

- Test beds, EV, CV
- Urban Air Mobility (UAM)
- Freight, e.g.,
 Freight
 electrification and
 platooning

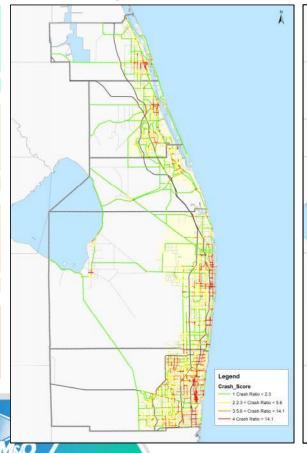
Existing Conditions

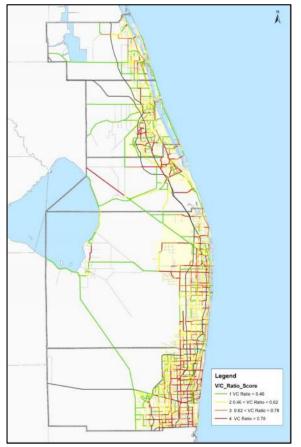
Relation Goals Master Plan Update and FDOT compass

Existing Conditions	Data availability	Related Goals		
Roadway Network	✓	All		
Crash Ratio	✓	Safety		
Traffic Volumes & Capacity	✓	Mobility, Reliability		
Signal Density	✓	Reliability		
Bottlenecks	✓	Reliability		
Transit Routes & Schedules	✓	Mobility		
Truck volume (percentage)	✓	Mobility		
Resilience	✓	Resilience		
Fiber networks	✓	Information		
Work zone management	✓	Reliability		
Connected & autonomous vehicles	✓	Technology		

Existing Conditions

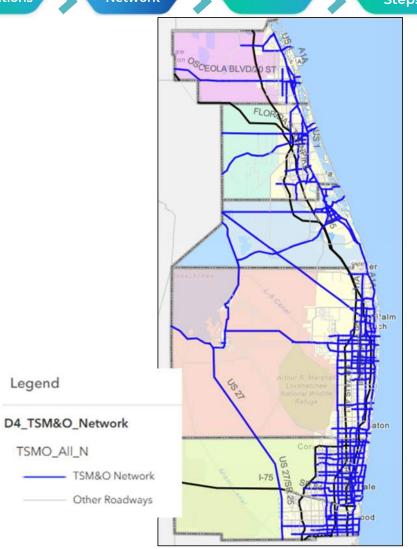
Crash Ratio


Traffic Volumes

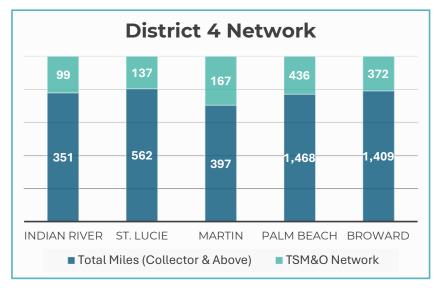

Signal Density

Medium/High

75-100% **High Priority**



TSM&O Strategic Network


- Score each criterion in quartiles i.e. 1-4
- Add scores for 7 criteria
- Composite score for all road segments
- Built 'corridors' from segments
- Strategic network = highest need corridors

TSM&O Strategic Network

County	Total Miles (Collector & Above)	Freeway		Arterial		TSM&O Network	
		Miles	%	Miles	%	Miles	%
Indian River	351	29	8%	164	47%	99	28%
St. Lucie	562	62	11%	271	48%	137	24%
Martin	397	45	11%	215	54%	167	42%
Palm Beach	1,468	91	6%	595	41%	436	30%
Broward	1,409	140	10%	583	41%	372	26%
District 4	4,189	367	9%	1,828	44%	1,211	29%

11

TSM&O Strategies by Facility / Mode

All Facility Types

- 1. Traffic Management Centers; Active Traffic Management
- 2. Emergency Transportation Operations, Rerouting
- 3. Traffic Incident Management
- 4. Traveler Information/Dynamic Message Signs
- 5. Predictive Traveler Information
- 6. Integrated Corridor Management
- 7. Safety Service Patrols
- 8. Safety Programs
- 9. Surveillance/Detection
- 10. Special Event Management
- 11. Road Weather Information Systems
- 12. Connected & Automated Vehicles
- 13. Smart Corridor
- 14. Speed Warning and Enforcement
- 15. Roadway Closure Management
- 16. Flooded Road Management
- 17. Travel Demand Management
- 18. Parking Management Systems, Wayfinding

Freeway Management

- 19. Electronic Toll Systems
- 20. Express Lanes, High Occupancy Toll Facilities
- 21. Dynamic Lane Use Control
- 22. Adaptive Ramp Metering
- 23. Reversible Lanes
- 24. Variable Speed Limits
- 25. Hard Shoulder Running

Arterial Management

- 26. Traffic Signal Optimization/Retiming
- 27. Traffic Adaptive Signal Control
- 28. Intersection Safety
 Warning/Collision Avoidance

Work Zones

29. Smart Work Zones

Freight, Rail, Automated & Connected Vehicles

- 30. Grade Crossing Management
- 31. Truck Signal Priority
- 32. Truck Dynamic Rerouting
- 33. Truck Parking Availability System (TPAS)
- 34. Commercial Vehicle Information Systems
- 35. Connected Vehicle Applications RSU, OBU

Transit and Multimodal

- 36. Pedestrian Crossing Detection
- 37. Rectangular Rapid Flashing Beacon (RRFB)
- 38. Pedestrian Safety Systems
- 39. Transfer Connection Protection
- 40. Adaptive & Intelligent Streetlights
- 41. Drawbridge management
- 42. Bicycle Alert System
- 43. Transit AVL & CAD [Automated Vehicle Locator & Computer aided Dispatch]
- 44. Transit Signal Priority
- 45. Bus Queue Jump
- 46. Bus Rapid Transit
- 47. Onboard Safety and Security Management
- 48. Dynamic Transit Fare Reduction

Next Steps

Design Methodology of Implementation Strategies

Identify critical needs

Relate strategies to context class, goals and needs

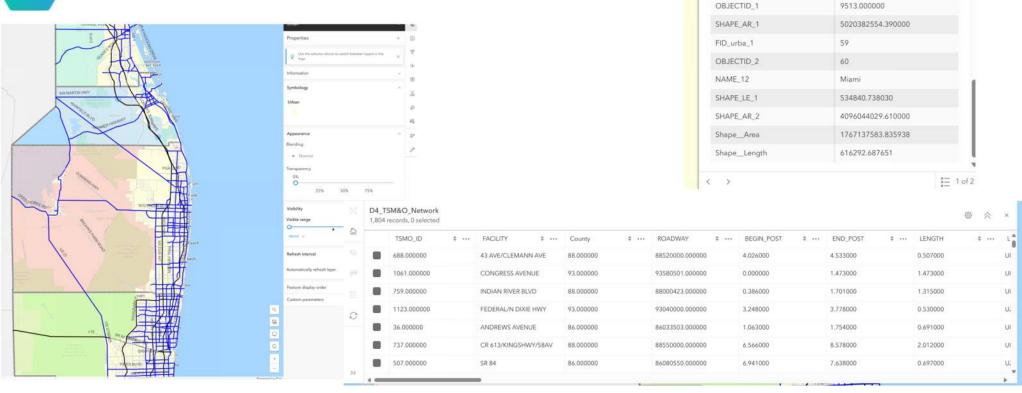
Review relevance and effectiveness of strategies for segments/facilities with multiple needs

Regional ITS Architecture (RITSA) Updates

Develop and Prioritize Projects

Align groups of strategies to corridor segments by need

Present Recommendations and Obtain Input



Questions?

- Kent Walia kent.walia@dot.state.fl.us
- Alexandra Lopez <u>alexandra.lopez@dot.state.fl.us</u>
- Nicholas Slupecki <u>nicholas.slupecki@dot.state.fl.us</u>
- Peter Haliburton phaliburton@ctseinc.com
- Lissy La Paix Puello <u>llapaix@ctseinc.com</u>

14 GIS Viewer

PALM BEACH

FIPS_COU_1

WATER_1

Ⅲ Table ⊕ Zoom to

99

Q

• https://www.arcgis.com/home/item.html?id=2cd295db6f98451fa6f157fc2fc7e568

Digital Twins For Traffic Management Systems, Vehicle Connectivity, And Automation

Mohammed Hadi, Ph.D., PE Md Mahmud Hasan Mamun Florida International University

What is a Digital Twin

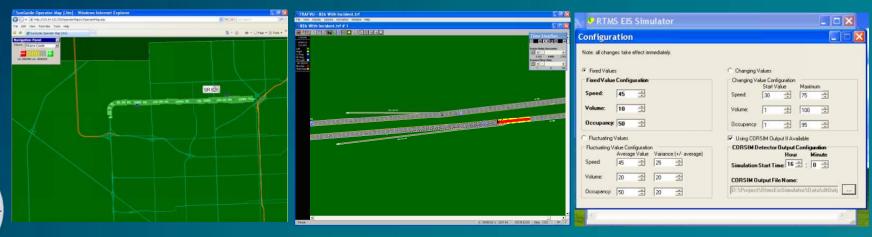
- ▶ A virtual model of human, devices, products, systems, and/or processes
 - ▶ is dynamically updated with data from its physical twin
 - ▶ has a predictive capability (e.g., simulation and/or Al)
 - ► Informs decisions
 - Involves bi-directional interaction between the virtual and the physical environments

Digital Twin Components

- ► Physical object(s)
 - ► Real-world (e.g., sensors, CV equipment, drivers on the road)
 - ► Software-in-the-loop
 - ► Hardware-in-the-loop
 - ► Human-in-the-loop
- ► Virtual object(s)
 - ► Simulation including multiple simulation platforms and extension of simulation
 - ► Al for monitoring, diagnosis, prediction, and decision making
 - ▶ Other computational techniques depending on the use case
- ▶ Bi-directional information and data connections

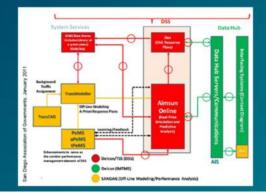
Digital Twin Benefits

- • • •
- ► Allows the identification of performance, errors, and issues prior to real-world occurrence
- Allows testing of devices, standards, and processes
- Provides predictive capabilities
- Provides assessment of current and past history
- Supports optimal resource utilization
- Can be used in workforce development/training
- ► Reduce cost of development and testing


FIU Related Research

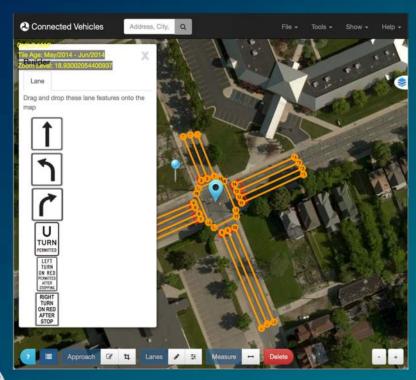
Traffic Management Simulation Development (SunSim)

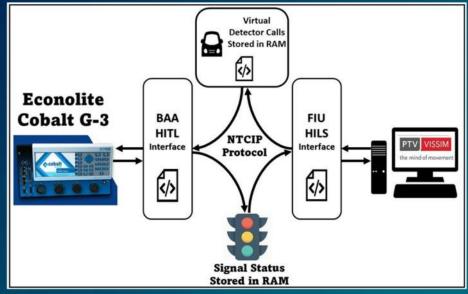
-
- ▶ One of the early research on the subject (Research Center Project 2010-12)
- ▶ Data streams from the virtual detectors in CORSIM were converted to emulate microwave detector data in real-time operations
- ▶ Used for testing RTMS drivers, incident module in SunGuide, and the prediction of incident impacts.

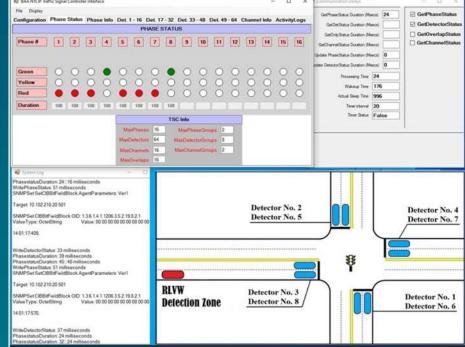


Review and Assessment of Traffic Management DSS and STP

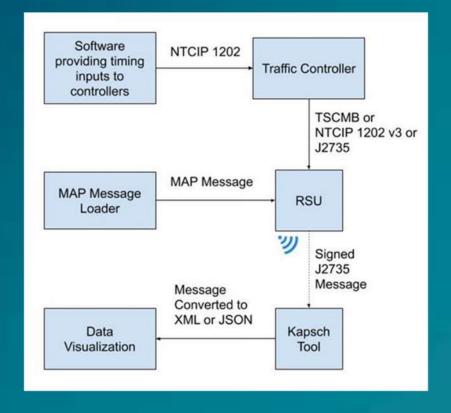
.....


- ▶ FHWA and FDOT Projects
- Assess current state of practice, applicability, feasibility, and effectiveness of Decision Support Systems and Short-Term Prediction based on machine learning and simulation.
- ▶ Identify methods to support the decisions associated with ICM.
- Assess the capability needed to support ICM decisions


Hardware-In-the-Loop (HIL) Testing: Environment



:::::: HIL Simulation Data Flow and Interface ::::::

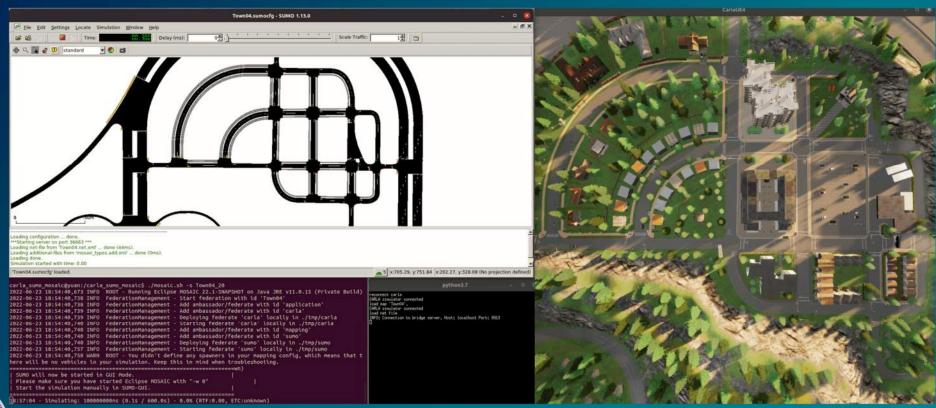


Message-Level Application Requirements

- Three applications:
 - ➤ SPaT/MAP messages to support Red Light Violation Warning (LRVW)
 - ► Emergency Vehicle Preemption (EVP) using SRM/SSM messages, and
 - ➤ Work Zone Warning (WZW) and Reduced Speed Zone Warning And Lane Closure (RSZW/LC) using TIM messages
- ▶ Based on available national requirements

Driving Simulator

Automated Vehicle Research



Co-Simulation

Digital Twin for Connected,
Safe and Reliable Travel in
an Urban Network in the
Presence of Work Zones and
Special Events

Presenters Md Mahmud Hasan Mamun, Jasmine Hadi, and

Nattakarn Surangsrirout

Advisor Dr. Mohammed Hadi, PE, Professor, Florida

International University

In Collaboration Florida Department of Transportation

District 4, and City of Fort Lauderdale, Florida

Team Members

Dr. Mohammed Hadi, P.E.

Academic Advisor

Director of Lehman Center
Florida International University

Alexandra Lopez P.E, P.T.O.E Industry Advisor TSMO Program Engineer FDOT District 4

Daniel Smith PMP
Industry Advisor
TSMO Arterial Operations Manager
FDOT District 4

Tatiana Mitchell
Industry Advisor
TSMO Project Coordinator
FDOT District 4

Milos Majstorovic, MSCE, P.E

Deputy Director

Transportation & Mobility

City of Fort Lauderdale

Md Mahmud Hasan Mamun

Co-Captain

Ph.D. Candidate

Florida International University

Jasmine Hadi
Co-Captain
TSMO Intern FDOT District 4
BS/MS Student
Florida Atlantic University

Nattakarn Surangsrirout
Ph.D. Candidate
Florida International University

Wattana Laosinwattana
Ph.D. Candidate
Florida International University

Yasmine Al-Mograhbi
Ph.D. Candidate
Florida International University

Mariam De Celis

Engineering Tech
at Choice Engineering
Florida International University

•••••

Presentation Outline

• • • • • •

Background

Implementation

Problem Statement

Potential Benefits

Proposed Solution

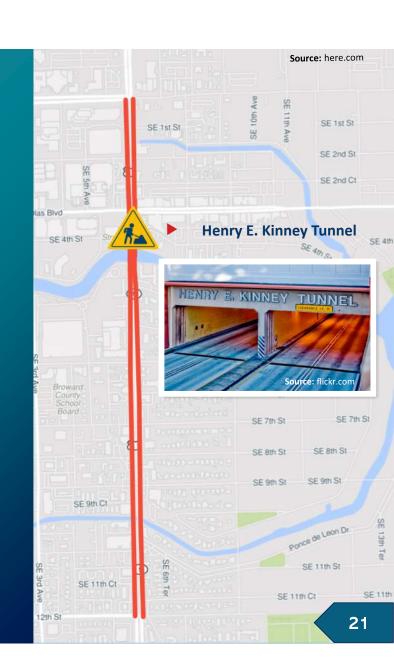
Next Steps

- The City of Fort Lauderdale is one of the largest and most visited cities in South Florida with major events scheduled throughout the year.
- The city is seeing major updates to its transportation system infrastructure with many work zones across the City.
 - FDOT District 4 TSMO program has implemented incident management, ramp metering, managed lanes, and other advanced management strategies.
 - The City of Fort Lauderdale works with the FDOT on managing roadway construction and special events.

 There is a need for a decision support system at the FDOT District 4 traffic management center and the City of Fort Lauderdale, Florida to ensure safe and efficient operations and work zone activities.

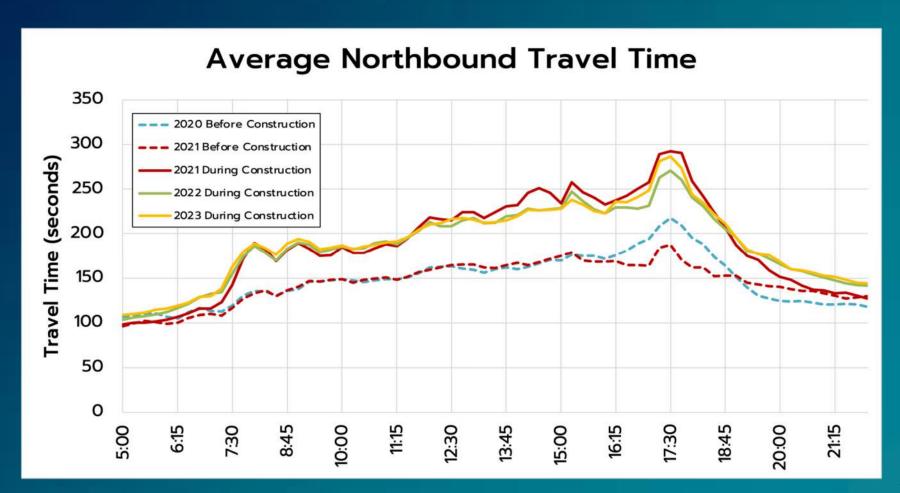
Source: RyanOverman from Gettylmages.com

Example of Work Zone Impacts

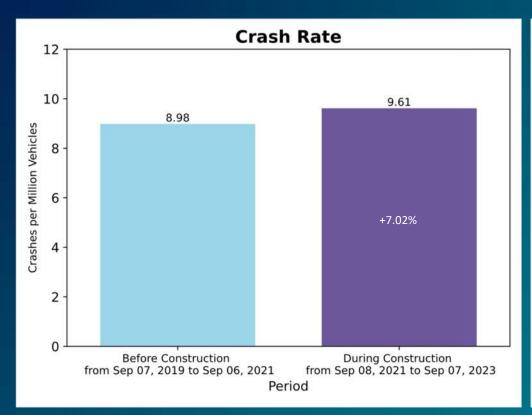

- The Henry E. Kinney Tunnel in Fort Lauderdale, Florida.
- The construction started on September 7, 2021.
- The travel time and crash data were collected for a 1-mile segment on US-1 in the vicinity of the work zone.

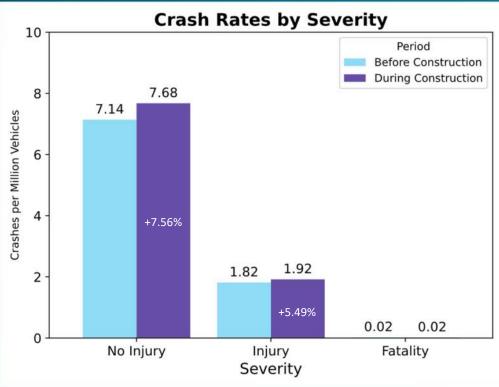
Signal Four Crash Data

SIGNAL FOUR ANALYTICS

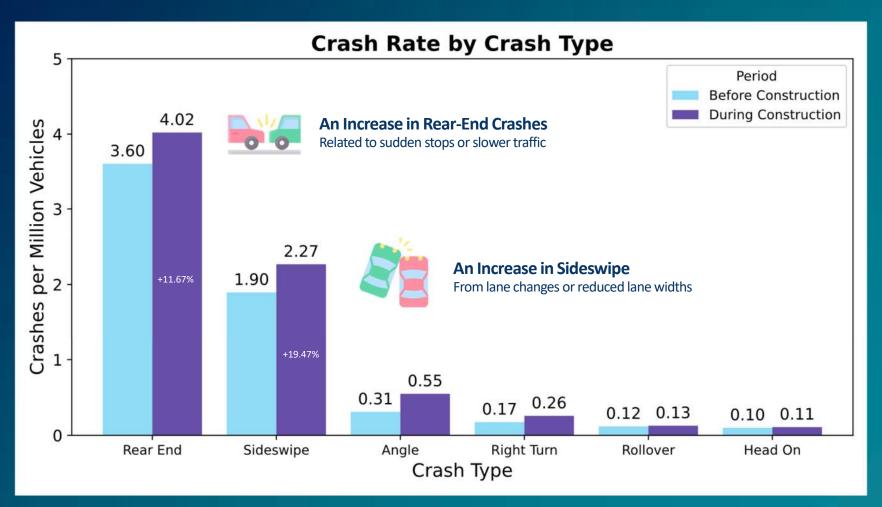

Source: signal4analytics.com

Travel Time Impacts





Example Safety Impacts



Safety Impacts by Crash Type

Digital Twin for Work Zone Connectivity and Management

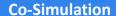
Bi-directional Interaction and Data Exchange

• Exchange data between the virtual and the physical components.

Predictive Capabilities Using Simulation and AI

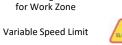
- Leverages AI algorithms to analyze historical and real-time data and predict future scenarios.
- Utilizes co-simulation to forecast potential issues and outcomes for those predicted scenarios.

Decision Support System


 Informs decisions based on duplicating and recreating the actions and dynamic changes in simulation.

Proposed Solution

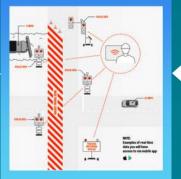
Digital Twin-Based DSS



Source: Ciro Pabon from Quora.com

Connected Traveler

Traffic Management


Lane Assignment

Source: Creativa Images and Scharfsinn86 from Canva.com

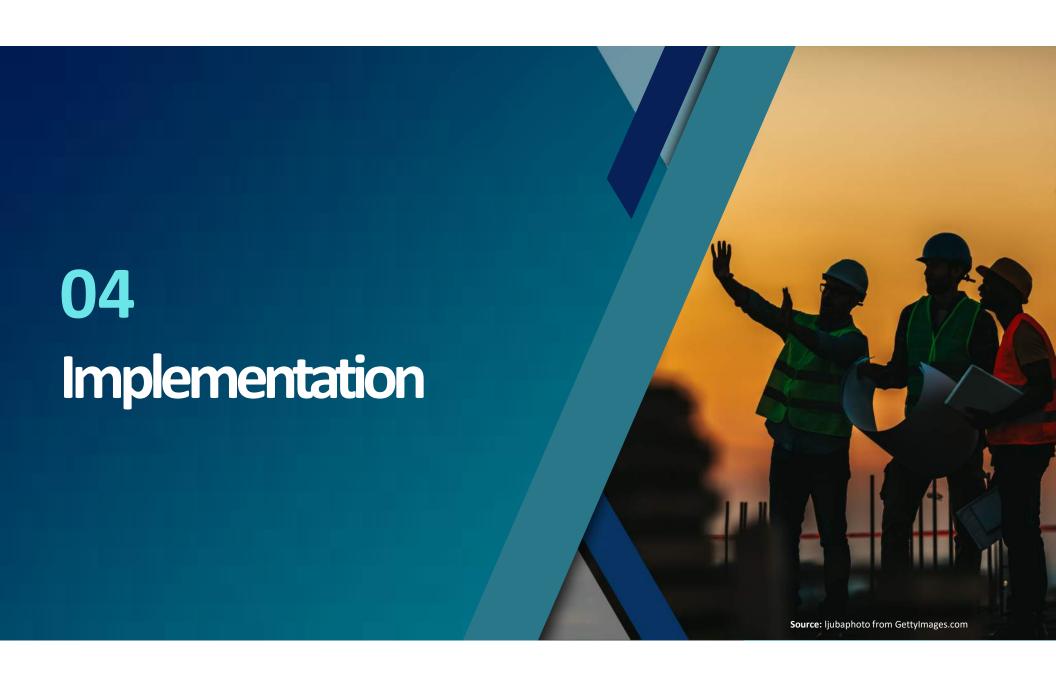
Portable Smart

Work Zone Equipment

Proactive Traffic Management

Influenced Area

Work Zone Schedule


Detour or Re-Route

Special Signal Plan

Variable Speed Limit

27

ITS Service Package

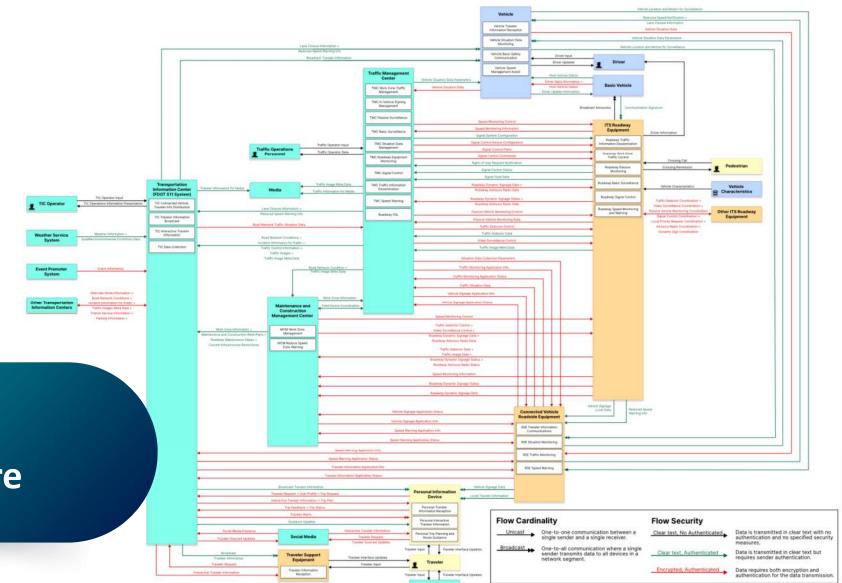
Maintenance and Construction

- MC06: Work Zone Management
- MC07: Work Zone Safety Monitoring

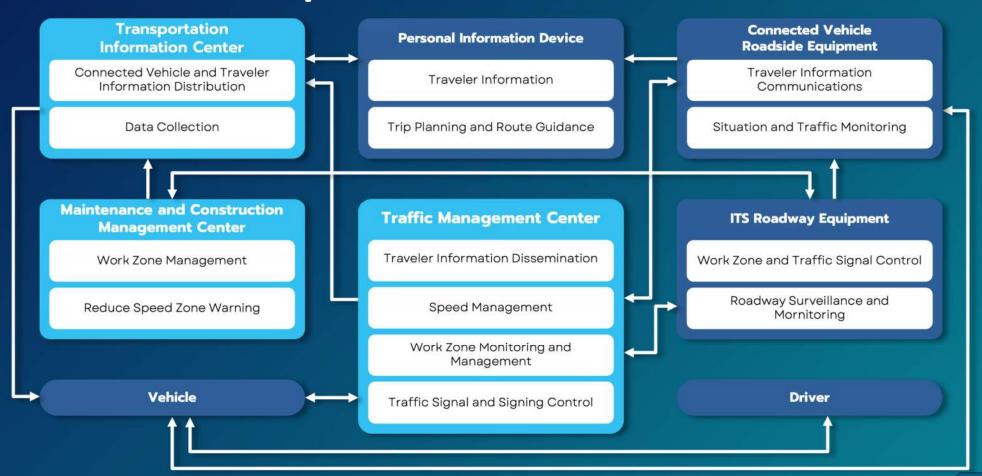
Traveler Information and Personal Mobility

- TI01: Broadcast Traveler Information
- TI02: Personalized Traveler Information
- TI03: En-Route Guidance

Traffic Management


- TM01: Infrastructure-Based Traffic Surveillance
- TM02: Vehicle-Based Traffic Surveillance
- TM03: Traffic Signal Control
- TM06: Traffic Information Dissemination
- TM20: Variable Speed Limits
- TM21: Speed Harmonization

Vehicle Safety


• VS09: Reduced Speed Zone Warning or Lane Closure

ITS Architecture

Simplified ITS Architecture

Stakeholders

Source: sketchify from Canva.com

Traffic Management Center Operators

Source: Mangostar Studio from Canva.com

Source: Sonny Sandra from IconbySonny and ivandesign from Canva

Other Regional Stakeholders

Cost Breakdown

Portable Equipment

Smart Work Zone Management Special Event Management

\$700,000

Management Support System

Digital Twin Development

\$400,000

System Integration

\$100,000

Traveler Information System

Smartphone Application

\$100,000

Operation and Maintenance

\$130,000 (per year)

10% of the capital costs

Contingency

\$ XXXXXX

XX% of XXXXX

Source: coralsales.com

Implementation Timeline

Description	Duration	2024					2025								
		AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JULY	AUG	SEP
Developed Requirements, Specification, and Design	3 months													A	
Data Collection	2 months														
Data Preparation	2 months														
Smartphone Application Development	4 months														
Digital Twin & Decision Support System Development	6 months														
Portable Equipment Installation/Integration/Testing	4 months			4											
Verification, Validation, and Evaluation	3 months														

• • • • • •

Safety

Lower Crash Rates

Safe driving behavior was increased by 44%

82%

of drivers were able to react to slow or stopped traffic

Potential Benefits

Mobility

Congestion decreased by

30%

90%

Delays were reduced by up to

ا 🛵 =

Improve Traffic Flow

Environmental

Proactive Traffic

Management Minimizes:

Energy Consumption

Emissions

User

95%

of drivers support using Smart Work Zone systems

Source:

The benefit database of the USDOT ITS Deployment Evaluation website

Next Steps

Source: Milan_Jovic from GettyImageSignatures.com

Source: Jasmine Hadi

Source: shironosov from Gettylmages.com

Source: BeeBright from GettyImages.com

Thank You!

Source: honglouwawa from Getty ImagesSignature.com